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A Appendix

This is the supplementary document containing the additional results and de-
tails of our proposed Sparse Coding Architecture (SCA) formulations, as well as
cluster details and additional preliminaries.

A.1 Reproducibility

In order to promote further research and standardize the evaluations of new
defenses, we provide full cluster-ready PyTorch [23] implementations of SCA
and all benchmarks as well as replication codes for all experiments on our project
page at: https://sayantondibbo.github.io/SCA.

We provide full details of the cluster hardware and all parameter choices used
in our experiments in Appendix A.3 and A.4, and in Appendix Tables 1 and 2.

A.2 Adapting Rozell LCA to Convolutional Networks

Although the original LCA formulation [25] was introduced for the non-convolutional
case, it is based on the general principle of feature-similarity-based competition
between neurons within the same layer, which can be adapted to the convolu-
tional setting via only two minimal changes to Equation 1 [18, 29]. In Rozell’s
original formulation, Ψptq can simply be recast from a matrix multiplication to
a convolution between the input and dictionary. Second, the lateral interaction
tensor, G in Equation 1, can also be recast from a matrix multiplication to a con-
volution between the dictionary and its transpose. Neuron membrane potential
works as follows:

9Pptq “
1

τ
rΨptq ´ Pptq ´ Rxptq ˚ Gs (1)

where τ is a time constant, Ψptq “ X ˚ Ω is the neuron’s bottom-up drive from
the input computed by taking the convolution, ˚, between the input, X , and the
dictionary, Ω, and ´Pptq is the leak term [18,29].
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A.3 Cluster Details

We run all our experiments using the slurm batch jobs on industry-standard high-
performance GPU clusters with 40 cores and 4 nodes. Details of the hardware
and architecture of our cluster are described in Table 1. We note that noise-
based Gaussian and Titcombe et al. [30] defenses are typically fastest on this
architecture (though they are the least-performant). We emphasize that our
sparse coding implementations are ‘research-grade’, unlike the optimized torch
GAN implementations available for [11]. See also Appendix G. Note that for
large scale applications, SCA’s sparse coding updates can be accelerated such
that they can be computed extremely efficiently (see the training complexity
discussion in the main paper body).

Table 1: Hardware Details of the Cluster in our Experiments.

Parameter Measurements

Core 40

RAM 565GB

GPU Tesla V100

Nodes p01-p04

Space 1.5TB

A.4 Parameters and architecture of SCA

We implement SCA using two Sparse Coding Layers (SCL): One following the
input image, and one following a downstream dense batch normalization layer.
Finally, we follow these two pairs of dense-then-sparse layers with downstream
fully connected (linear) layers before the classification layer. In the case of end-
to-end network experiments, we use 5 downstream linear layers, which is a rea-
sonable default. In the split network setting, we are careful to use 3 downstream
fully connected layers in order to match the architectures used in the split net-
work experimental setup of [30], and per our public codebase, we make every
effort to make the benchmarks within each setting comparable in terms of ar-
chitecture, aside from the obvious difference of SCA’s sparse layers We train
SCA’s sparse layers with 500 iterations of lateral competitions during recon-
structions in SCL layers. We emphasize that SCA can be made significantly
more complex, either via the addition of more sparse-dense pairs of layers, or by
adding additional (convolutional, linear) downstream layers before classification.
We avoid such complexity in the experiments in order to compare more directly
to benchmarks and because our goal is to study an architecture that captures
the essence of SCA. We give all parameter and training details in Table 2.
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Table 2: Architecture and Parameters of SCA implementation.

Parameter Value

Sparse Layers 2

Batch Norm Layers 2

Fully Connected Layers 5

λ 0.5

Learning rate η 0.01

Time constant τ 1000

Kernel size 5

Stride 1,1

Lateral competition iterations 500

A.5 Attack details

In the Plug-&-Play attack experiments, we follow the authors’ attack exactly
[28], except we update their approach to use the latest StyleGAN3 [17] for high-
resolution image generation. For the end-to-end and split-network attacks, we
consider a recent state-of-the-art surrogate model training attack optimized via
SGD [1,39]. This attack works by querying the target model with an externally
obtained dataset. To capture a well-informed ‘worst-case’ attacker, we set this
dataset to a holdout set from the true training dataset. The attack then uses the
corresponding model high-dimensional intermediate outputs to train an inverted
surrogate model that outputs actual training data.

A.6 SCA sparsity vs. robustness

We vary the sparsity, i.e., λ parameter and run the Sparse-Standard, as well as
our SCA. We observe that increasing λ helps improve the robustness, without
significant accuracy drops. For example, Table 3 shows this comparison for
MNIST in the end-to-end setting.

B Model Inversion Attack Methodology: Additional
discussion

Because privacy attacks are an emerging field, we feel it is relevant to include
additional context and discussion here. Recent work has highlighted a variety of
attack vectors targeting sensitive training data of machine learning models [3–7,
7,10,19,20,26,27,31–34,41,44]. These attacks not only target centralized models
but also can make the federated learning models vulnerable to attacks [8, 13].
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Table 3: Sparse-Standard and SCA performance with λPt0.1, 0.25, 0.5, 0.75u

PSNRÓ SSIMÓ FID Ò Accuracy

λ Sp-Std SCA Sp-Std SCA Sp-Std SCA Sp-Std SCA

0.1 23.45 19.54 0.650 0.502 111.5 178.5 0.984 0.984
0.25 21.34 18.81 0.438 0.340 142.9 174.1 0.986 0.983
0.5 22.16 17.85 0.598 0.164 136.9 335.4 0.985 0.977
0.75 22.39 14.65 0.593 0.086 142.0 214.1 0.981 0.971

Adversaries with different access (i.e., black-box, white-box) to these models
perform different attacks leveraging a wide range of capabilities, e.g., knowledge
about the target model confusion matrix and access to blurred images of that
particular class [5, 9, 13, 16, 35]. Such attacks commonly fall under the umbrella
of privacy attacks, which include specific attacker goals such as membership
inference, model stealing, model inversion, etc. [14,21,37,40]. Defending against
privacy attacks is a core task of mainstream technology platforms ranging from
public social networks to private medical research [2, 22,38].

Our focus is model inversion attack, where an adversary aims to infer sen-
sitive training data attributes Xs or reconstruct training samples Xin, a severe
threat to the privacy of training data DTr [21,30]. In Figure 1a, we present the
pipelines of the model inversion attack. Depending on data types and purpose,
model inversion attacks can be divided into two broader categories: (i) attribute
inference (AttrInf) and (ii) image reconstruction (ImRec) attacks [6]. In AttrInf
attacks, it is assumed the adversary can query the target model ftar and design a
surrogate model fsur to infer some sensitive attributes Xs in training data DTr,
with or without knowing all other non-sensitive attributes training data Xns in
the training data DTr, as presented in Figure 1b. In ImRec attacks the adversary
reconstructs entire training samples DTr using the surrogate model fsur with or
without having access to additional information like blurred, masked, or noisy
training samples Ds, as shown in Figure 1c [9,41,43]. To contextualize our SCA
setting, recall that we suppose the attacker has only black-box access to query
the model ftar without knowing the details of the target model ftar architecture
or parameters like gradient information ∇Tr. The attacker attempts to compute
training data reconstruction (i.e., ImRec) attack without having access to other
additional information, e.g., blurred or masked images Ds.

Two major components of the model inversion attack workflow are the target
model ftar and the surrogate attack model fsar [6, 15, 42]. Training data recon-
struction (i.e., ImRec) attack in the literature considers the target model ftar to
be either the split network [30] or the end-to-end network [11, 41]. In the split
network ftar model, the output of a particular layer l in the network, i.e., arls,
where 1 ď l ă L is accessible to the adversary, whereas, for the end-to-end net-
work, the adversary does not have access to intermediate layer outputs; rather,
the adversary only has access to the output from the last hidden layer before
the classification layer arLs.
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(a) Model Inversion Attack (b) Attribute Inference

Original Reconstructed

(c) Image Reconstruction

Fig. 1: Illustration of Model Inversion attack along with (a.) pipelines–an adversary
queries target model ftar with inputs Xin to obtain output ftarpXinq. Then adversary
trains a surrogate attack model fsar, where the ftarpXinq is the input and X˚ is
the output; and (b.) categories, i.e., attribute inference (AttrInf) attack, where the
adversary infers sensitive attribute Xs with or without knowing non-sensitive attribute
values, i.e., Xns Ñ Xs and (c.) image reconstruction (ImRec) attack, where adversary
reconstructs similar to original images, i.e., Xin « X˚

in.

C Results of extra {threat model, dataset} experiments

We experiment all 3 attack setups: Plug-&-Play model inversion attack [28],
end-to-end, and split on three additional datasets: MNIST, Fashion MNIST,
and CIFAR10. We experiment with all benchmarks and present the results on
Tables 4, 5, and 6. In all of these additional datasets, SCA consistently outper-
forms all benchmarks.

D Additional baseline tuning

We also attempt to improve the Laplace noise-based defense of Titcombe et
al. [30] by increasing the noise scale parameter b from Lpµ“0, b“0.5q to Lpµ“0,
b“1.0q. Tables 7, 8, and 9 compare these results to SCA for in all 3 attack
settings. Observe that the additional noise significantly degrades classification
accuracy in all but one case, yet it does not result in reconstruction metrics
that rival those of SCA’s. In Figure 2, we present the reconstructed images in
the Split network attack setting on MNIST data. We also include the Laplace
noise-based defense with higher noise parameter Lpµ“0, b“1.0q.

E Stability analysis of SCA

Tables 10 and 11 show mean metrics and std. deviation error bars taken over
multiple runs of each defense. Observe that SCA is at least as stable (and in
some cases significantly more stable) than alternatives.
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Table 4: Experiments set 1 Additional Datasets: Performance in Plug-&-Play
Model Inversion Attack [28] setting (lower rows=better defense).

Dataset Defense PSNR Ó SSIM Ó FID Ò Accuracy
MNIST No-Defense 7.24 0.783 23.6 0.971

Gaussian-Noise 6.94 0.686 31.22 0.958
GAN 6.83 0.734 89.38 0.968
Gong et al. [11]++ 6.69 0.716 92.21 0.987
Titcombe et al. [30] 6.34 0.744 131.8 0.980
Gong et al. [11] 6.76 0.681 99.53 0.985
Peng et al. [24] 6.89 0.704 283.8 0.941
Hayes et al. [12] 7.03 0.672 396.1 0.871
Wang et al. [36] 7.14 0.752 261.2 0.937
Sparse-Standard 6.24 0.631 158.6 0.986
SCA0.1 6.19 0.633 287.9 0.984
SCA0.25 5.83 0.607 289.3 0.983
SCA0.5 5.74 0.604 299.6 0.977

Fashion No-Defense 8.91 0.147 235.5 0.886
MNIST Gaussian-Noise 8.67 0.132 239.8 0.815

GAN 8.66 0.147 243.3 0.883
Gong et al. [11]++ 8.73 0.130 220.2 0.906
Titcombe et al. [30] 8.56 0.134 229.8 0.905
Gong et al. [11] 8.57 0.143 244.3 0.888
Peng et al. [24] 8.85 0.147 227.5 0.845
Hayes et al. [12] 8.63 0.139 218.4 0.752
Wang et al. [36] 8.90 0.119 210.3 0.880
Sparse-Standard 8.71 0.135 223.3 0.879
SCA0.1 8.49 0.039 222.8 0.897
SCA0.25 8.49 0.032 229.9 0.887
SCA0.5 8.45 0.047 233.5 0.876

CIFAR10 No-Defense 11.94 0.381 39.38 0.821
Gaussian-Noise 11.88 0.365 77.92 0.626
GAN 11.86 0.369 88.39 0.596
Titcombe et al. [30] 10.89 0.346 79.19 0.792
Gong et al. [11]++ 11.06 0.339 78.48 0.773
Gong et al. [11] 11.21 0.334 92.33 0.682
Peng et al. [24] 11.96 0.354 120.5 0.752
Hayes et al. [12] 11.12 0.342 142.1 0.626
Wang et al. [36] 11.02 0.346 142.6 0.756
Sparse-Standard 10.74 0.303 137.4 0.790
SCA0.1 10.59 0.305 144.1 0.787
SCA0.25 10.27 0.279 189.9 0.772
SCA0.5 10.23 0.276 189.7 0.744

F Compute time

Our basic SCA research implementation completes in comparable or less com-
pute time than highly optimized implementations of benchmarks. In the ‘worst-
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Table 5: Experiments set 2 Additional Datasets: Performance in end-to-end net-
work setting (lower rows=better defense).

Dataset Defense PSNR Ó SSIM Ó FID Ò Accuracy
MNIST No-Defense 40.87 0.982 16.31 0.971

Gaussian-Noise 40.88 0.983 15.88 0.958
GAN 40.69 0.981 16.59 0.968
Titcombe et al. [30] 31.18 0.863 47.32 0.980
Gong et al. [11]++ 30.37 0.838 72.99 0.987
Gong et al. [11] 29.05 0.817 75.39 0.985
Peng et al. [24] 18.44 0.354 111.6 0.968
Hayes et al. [12] 19.75 0.488 298.8 0.871
Wang et al. [36] 27.26 0.862 72.66 0.962
Sparse-Standard 21.34 0.439 142.9 0.986
SCA0.1 19.54 0.502 178.5 0.984
SCA0.25 18.81 0.340 174.1 0.983
SCA0.5 17.85 0.164 335.5 0.977

Fashion No-Defense 37.86 0.975 13.91 0.886
MNIST Gaussian-Noise 36.54 0.969 16.49 0.815

GAN 37.68 0.974 19.26 0.883
Gong et al. [11]++ 27.71 0.794 41.35 0.906
Titcombe et al. [30] 26.66 0.759 53.76 0.905
Gong et al. [11] 21.24 0.523 93.08 0.888
Peng et al. [24] 17.98 0.368 70.53 0.880
Hayes et al. [12] 21.13 0.297 223.3 0.752
Wang et al. [36] 25.98 0.806 41.87 0.838
Sparse-Standard 19.35 0.446 128.4 0.879
SCA0.1 17.92 0.209 196.1 0.897
SCA0.25 17.03 0.186 195.2 0.887
SCA0.5 14.51 0.069 423.2 0.876

CIFAR10 No-Defense 21.17 0.477 70.96 0.821
Gaussian-Noise 20.26 0.220 77.42 0.626
GAN 19.71 0.259 132.0 0.596
Titcombe et al. [30] 18.62 0.174 171.9 0.792
Gong et al. [11]++ 18.27 0.209 149.1 0.773
Gong et al. [11] 19.10 0.150 133.8 0.682
Peng et al. [24] 17.20 0.002 130.3 0.717
Hayes et al. [12] 17.95 0.002 142.4 0.626
Wang et al. [36] 17.08 0.002 136.1 0.793
Sparse-Standard 18.01 0.003 168.6 0.790
SCA0.1 17.09 0.001 172.0 0.787
SCA0.25 16.78 0.001 189.3 0.772
SCA0.5 16.24 0.001 197.0 0.744

case’ across all of our experiments, SCA is faster than the best performing
baseline (Peng et al. [24]) but slower than other baselines. Table 13 shows the
compute times (in seconds) for this ‘worst-case’ experiment below (The MNIST
dataset under the Plug-&-Play attack [28]).
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Table 6: Experiments set 3 Additional Datasets: Performance in split network
setting (lower rows=better defense).

Dataset Defense PSNR Ó SSIM Ó FID Ò Accuracy
MNIST No-Defense 31.21 0.923 19.64 0.963

Gaussian-Noise 31.07 0.922 23.27 0.972
GAN 28.39 0.894 27.26 0.969
Gong et al. [11] 28.30 0.806 69.38 0.986
Titcombe et al. [30] 25.40 0.713 76.88 0.952
Gong et al. [11]++ 21.94 0.591 97.33 0.991
Peng et al. [24] 16.90 0.475 103.2 0.960
Hayes et al. [12] 17.23 0.030 288.1 0.856
Wang et al. [36] 21.87 0.696 53.09 0.903
Sparse-Standard 18.71 0.288 188.4 0.981
SCA0.1 16.17 0.109 227.4 0.988
SCA0.25 17.40 0.058 301.6 0.980
SCA0.5 14.98 0.044 307.7 0.975

Fashion No-Defense 29.66 0.911 14.33 0.868
MNIST Gaussian-Noise 29.49 0.909 14.81 0.871

GAN 26.03 0.849 19.33 0.885
Gong et al. [11] 23.70 0.631 97.52 0.884
Titcombe et al. [30] 20.48 0.565 81.01 0.872
Gong et al. [11]++ 25.77 0.726 57.72 0.908
Peng et al. [24] 20.67 0.583 46.48 0.865
Hayes et al. [12] 20.10 0.256 200.6 0.748
Wang et al. [36] 24.53 0.588 81.79 0.881
Sparse-Standard 19.54 0.405 200.5 0.882
SCA0.1 18.11 0.154 171.1 0.904
SCA0.25 17.74 0.188 203.8 0.896
SCA0.5 17.15 0.134 270.4 0.879

CIFAR10 No-Defense 16.48 0.709 47.77 0.823
Gaussian-Noise 14.79 0.311 149.5 0.598
GAN 14.87 0.296 13.01 0.675
Titcombe et al. [30] 14.68 0.244 157.3 0.779
Gong et al. [11]++ 13.32 0.003 162.4 0.691
Gong et al. [11] 14.55 0.291 152.1 0.644
Peng et al. [24] 17.18 0.002 169.1 0.707
Hayes et al. [12] 15.44 0.005 204.5 0.596
Wang et al. [36] 14.73 0.001 176.3 0.820
Sparse-Standard 13.22 0.003 167.9 0.769
SCA0.1 13.18 0.002 174.2 0.758
SCA0.25 13.07 0.002 181.2 0.742
SCA0.5 12.88 0.002 375.3 0.739

G Ablations: Tuning SCA

Observe that our SCA outperforms SOTA defense baselines in robustness even
without any tuning of parameters. However, tuning the hyper-parameters can



Improving Robustness to MI Attacks via Sparse Coding Architectures 9

Table 7: Experiments set 1: additional Laplace noise benchmark with larger 1.0 noise
parameter: Performance in Plug-&-Play Model Inversion Attack [28] setting (lower
rows=better defense).

Dataset Defense PSNR Ó SSIM Ó FID Ò Accuracy
MNIST Titcombe et al. [30]-1.0 6.60 0.685 280.1 0.938

SCA0.1 6.19 0.633 287.9 0.984
SCA0.25 5.83 0.607 289.3 0.983
SCA0.5 5.74 0.604 299.6 0.977

Fashion Titcombe et al. [30]-1.0 8.72 0.1412 232.1 0.823
MNIST SCA0.1 8.49 0.039 222.8 0.897

SCA0.25 8.49 0.032 229.9 0.887
SCA0.5 8.45 0.047 233.5 0.876

CIAFR10Titcombe et al. [30]-1.0 10.75 0.335 112.7 0.779
SCA0.1 10.59 0.305 144.1 0.787
SCA0.25 10.27 0.279 189.9 0.772
SCA0.5 10.23 0.276 189.7 0.744

Table 8: Experiments set 2 additional Laplace noise benchmark with larger 1.0 noise
parameter: Performance in end-to-end network setting (lower rows=better defense).

Dataset Defense PSNR Ó SSIM Ó FID Ò Accuracy
MNIST Titcombe et al. [30]-1.0 24.89 0.664 50.64 0.938

SCA0.1 19.54 0.502 178.5 0.984
SCA0.25 18.81 0.340 174.1 0.983
SCA0.5 17.85 0.164 335.5 0.977

Fashion Titcombe et al. [30]-1.0 20.21 0.567 80.55 0.823
MNIST SCA0.1 17.92 0.209 196.1 0.897

SCA0.25 17.03 0.186 195.2 0.887
SCA0.5 14.51 0.069 423.2 0.876

CIFAR10 Titcombe et al. [30]-1.0 18.71 0.672 170.8 0.779
SCA0.1 17.09 0.001 172.0 0.787
SCA0.25 16.78 0.001 189.3 0.772
SCA0.5 16.24 0.001 197.0 0.744

boost the accuracy further, e.g., we use kernel size as default 5 for all experiments.
Increasing the kernel from 5 to 7 can improve SCA accuracies beyond. While
our goal is to capture the essence of the SCA itself in terms of robustness, we
explore a little bit on further possible improvements on accuracy scores. We
consider the lowest robust SCA, i.e., SCA0.1 for the tuning of kernel size, and
we present the comparisons of accuracies between SCA0.1 and Tuned SCA0.1
in Table 12.
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Table 9: Experiments set 3: additional Laplace noise benchmark with larger 1.0 noise
parameter: Performance in split network setting (lower rows=better defense).

Dataset Defense PSNR Ó SSIM Ó FID Ò Accuracy
MNIST Titcombe et al. [30]-1.0 22.63 0.503 66.40 0.980

SCA0.1 16.17 0.109 227.4 0.988
SCA0.25 17.40 0.058 301.6 0.980
SCA0.5 14.98 0.044 307.7 0.975

Fashion Titcombe et al. [30]-1.0 18.36 0.408 80.80 0.878
MNIST SCA0.1 18.11 0.154 171.1 0.904

SCA0.25 17.74 0.188 203.8 0.896
SCA0.5 17.15 0.134 270.4 0.879

CIAFR10Titcombe et al. [30]-1.0 14.27 0.259 171.6 0.786
SCA0.1 13.18 0.002 174.2 0.758
SCA0.25 13.07 0.002 181.2 0.742
SCA0.5 12.88 0.002 375.3 0.739

Actual
No-
Def

Gaussian 
-Noise 

Titcombe 
et al. 

Gong 
et al. ++

Gong 
et al.

Wang 
et al.

Sp-
Std

Peng 
et al.

Hayes 
et al. SCA.1 SCA.25 SCA.5

PS
N

R

Titcombe 
et al.1.0 

Fig. 2: Qualitative comparisons among actual and reconstructed images under SCA
and additional Laplace noise defense benchmark with larger 1.0 noise parameter.

H Robustness of sparse coding layers: UMap

In Figure 3, we present the UMap representation of linear, convolutional, and
sparse coding layers on the other datasets, i.e., CelebA and Medical MNIST
datasets. Observe that, the data points are more scattered in the sparse coding
layer UMap (Figure 3c and Figure 3f) representations compared to the linear
(Figure 3a and Figure 3d) and convolutional layers (Figure 3b and Figure 3e),
which provide more robustness to models with sparse coding layers, i.e., our
proposed SCA, against the privacy attacks.
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Table 10: Stability analysis 1: Performance comparison (mean˘ standard devia-
tions) across multiple runs in Plug-&-Play Model Inversion Attack [28] setting (lower
rows=better defense) on high-res CelebA dataset.

Dataset Defense PSNR Ó SSIM Ó FID Ò Accuracy
CelebA No-Defense 11.42 ˘ 2.44 0.613 ˘ 0.29 292.9 ˘ 81.5 0.721 ˘ 0.04

Gaussian-Noise 10.87 ˘ 2.25 0.614 ˘ 0.30 296.5 ˘ 73.3 0.624 ˘ 0.03
GAN 11.02 ˘ 1.82 0.600 ˘ 0.29 301.4 ˘ 92.4 0.613 ˘ 0.02
Gong et al. [11]++ 10.84 ˘ 1.94 0.556 ˘ 0.28 301.0 ˘ 81.4 0.658 ˘ 0.02
Titcombe et al. [30] 10.76 ˘ 2.37 0.557 ˘ 0.24 345.5 ˘ 86.1 0.643 ˘ 0.01
Gong et al. [11] 10.91 ˘ 1.88 0.560 ˘ 0.29 304.5 ˘ 82.5 0.616 ˘ 0.01
Peng et al. [24] 10.17 ˘ 2.32 0.491 ˘ 0.24 399.1 ˘ 55.3 0.667 ˘ 0.04
Hayes et al. [12] 10.16 ˘ 1.95 0.535 ˘ 0.25 320.8 ˘ 79.0 0.601 ˘ 0.02
Wang et al. [36] 10.39 ˘ 2.55 0.505 ˘ 0.24 341.7 ˘ 74.2 0.669 ˘ 0.05
Sparse-Std 9.78 ˘ 2.13 0.485 ˘ 0.24 367.3 ˘ 44.7 0.663 ˘ 0.03
SCA0.1 9.56 ˘ 2.30 0.454 ˘ 0.25 396.6 ˘ 45.0 0.659 ˘ 0.04
SCA0.25 9.27 ˘ 2.06 0.452 ˘ 0.25 412.8 ˘ 53.7 0.661 ˘ 0.05
SCA0.5 9.12 ˘ 2.68 0.368 ˘ 0.24 421.7 ˘ 49.9 0.653 ˘ 0.04

Table 11: Stability analysis 2: Performance comparison (mean˘ standard devia-
tions) across multiple runs in end-to-end network setting (lower rows=better defense)
on Medical MNIST dataset.

Dataset Defense PSNR Ó SSIM Ó FID Ò Accuracy
Medical No-Defense 30.17 ˘ 0.90 0.912 ˘ 0.01 12.40 ˘ 8.69 0.998 ˘ 0.01
MNIST Gaussian-Noise 27.00 ˘ 1.30 0.828 ˘ 0.05 17.29 ˘ 11.9 0.886 ˘ 0.06

GAN 25.05 ˘ 2.78 0.699 ˘ 0.03 29.08 ˘ 20.5 0.995 ˘ 0.01
Gong et al. [11]++ 20.37 ˘ 1.65 0.451 ˘ 0.03 44.68 ˘ 30.9 0.871 ˘ 0.01
Titcombe et al. [30] 20.51 ˘ 0.28 0.574 ˘ 0.01 28.23 ˘ 1.65 0.805 ˘ 0.06
Gong et al. [11] 23.65 ˘ 1.07 0.605 ˘ 0.09 37.16 ˘ 26.2 0.757 ˘ 0.03
Peng et al. [24] 17.42 ˘ 2.87 0.519 ˘ 0.22 65.39 ˘ 32.8 0.866 ˘ 0.08
Hayes et al. [12] 19.57 ˘ 1.08 0.003 ˘ 0.01 155.0 ˘ 92.5 0.847 ˘ 0.08
Wang et al. [36] 17.89 ˘ 2.09 0.463 ˘ 0.08 101.8 ˘ 66.5 0.829 ˘ 0.08
Sparse-Std 13.49 ˘ 0.29 0.158 ˘ 0.09 203.4 ˘ 92.2 0.865 ˘ 0.05
SCA0.1 12.46 ˘ 0.30 0.006 ˘ 0.01 231.8 ˘ 124 0.858 ˘ 0.08
SCA0.25 11.89 ˘ 0.35 0.008 ˘ 0.01 254.1 ˘ 153 0.850 ˘ 0.08
SCA0.5 11.19 ˘ 0.11 0.001 ˘ 0.01 276.9 ˘ 97.0 0.841 ˘ 0.08

Table 12: Comparison of Accuracy Scores among our unoptimized SCA0.1 and
Tuned SCA0.1 (kernel: 5Ñ 7) in all 3 setups on CelebA and Medical MNIST datasets.

Dataset Setup SCA0.1 Ò Tuned SCA0.1 Ò

CelebA plug and play 0.726 0.730
end to end 0.748 0.751
split 0.745 0.759

Medical plug and play 0.888 0.899
MNIST end to end 0.888 0.996

split 0.946 0.967
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Table 13

Model Time (sec)

No-Defense 10555.3

Gaussian-Noise 12555.3

GAN 15762.4

Titcombe et al. [30] 14390.2

Gong et al. [11] 16061.8

Gong et al. [11]++ 17521.8

Peng et al. [24] 18921.2

Hayes et al. [12] 16923.9

Wang et al. [36] 15229.9

Sparse-Standard 12327.5

SCA0.1 17009.8

SCA0.25 17181.2

SCA0.5 17912.9
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(f) Sparse Coding Layer

Fig. 3: UMap 2D projections of input images’ features by class after 2 linear layers, 2
conv. layers, or 2 sparse-coded layers on CelebA (top) & Medical MNIST (bottom).
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